RD Sharma Class 10 Solutions Chapter 6 Trigonometric Identities
RD Sharma Class 10 Solutions Trigonometric Identities Exercise 6.1
Prove the following trigonometric identities :
Question 1.
(1 – cos2 A) cosec2 A = 1
Solution:
(1 – cos2 A) cosec2 A = 1
L.H.S. = (1 – cos2 A) cosec2 A = sin2 A cosec2 A  (∵ 1 – cos2 A = sin2 A)
= (sin A cosec A)2 = (l)2 = 1 = R.H.S.  {sin A cosec A = 1 }
Question 2.
(1 + cot2 A) sin2 A = 1
Solution:
(1 + cot2 A) sin2 A = 1
L.H.S. = (1 + cot2 A) (sin2 A)
= cosec2 A sin2 A {1 + cot2 A = cosec2 A}
= [cosec A sin A]2
= (1)2= 1 = R.H.S. (∵ sin A cosec A = 1
Question 3.
tan2 θ cos2  θ = 1- cos2  θ
Solution:


Question 4.

Solution:

Question 5.
(sec2 θ – 1) (cosec2 θ – 1) = 1
Solution:

Question 6.

Solution:

Question 7.

Solution:

Question 8.

Solution:

Question 9.

Solution:

Question 10.

Solution:

Question 11.

Solution:


Question 12.

Solution:

Question 13.

Solution:


Question 14.

Solution:

Question 15.

Solution:

Question 16.
tan2  θ – sin2  θ = tan2  θ sin2 θ
Solution:

Question 17.
(sec θ + cos θ ) (sec θ – cos θ ) = tan2  θ + sin2 θ
Solution:


Question 18.
(cosec θ + sin θ) (cosec θ – sin θ) = cot2 θ + cos2 θ
Solution:

Question 19.
sec A (1 – sin A) (sec A + tan A) = 1 (C.B.S.E. 1993)
Solution:

Question 20.
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Solution:

Question 21.
(1 + tan2  θ) (1 – sin θ) (1 + sin θ) = 1
Solution:

Question 22.
sin2 A cot2 A + cos2 A tan2 A = 1 (C.B.S.E. 1992C)
Solution:


Question 23.

Solution:


Question 24.

Solution:

Question 25.

Solution:

Question 26.

Solution:


Question 27.

Solution:

Question 28.

Solution:


Question 29.

Solution:

Question 30.

Solution:



Question 31.
sec6 θ= tan6  θ + 3 tan2  θ sec2  θ + 1
Solution:



Question 32.
cosec6  θ = cot6  θ+ 3cot2θ cosec2  θ + 1
Solution:



Question 33.

Solution:

Question 34.

Solution:

Question 35.

Solution:

Question 36.

Solution:


Question 37.

Solution:


Question 38.

Solution:





Question 39.

Solution:

Question 40.

Solution:


Question 41.

Solution:

Question 42.

Solution:


Question 43.

Solution:

Question 44.

Solution:

Question 45.

Solution:


Question 46.

Solution:

Question 47.


Solution:






Question 48.

Solution:


Question 49.
tan2 A + cot2 A = sec2 A cosec2 A – 2
Solution:


Question 50.

Solution:

Question 51.

Solution:

Question 52.

Solution:


Question 53.

Solution:


Question 54.
sin2 A cos2 B – cos2 A sin2 B = sin2 A – sin2 B.
Solution:
L.H.S. = sin2 A cos2 B – cos2 A sin2 B
= sin2 A (1 – sin2 B) – (1 – sin2 A) sin2 B
= sin2 A – sin2 A sin2 B – sin2 B + sin2 A sin2 B
= sin2 A – sin2 B
Hence, L.H.S. = R.H.S.
Question 55.

Solution:



Question 56.
cot2 A cosec2 B – cot2 B cosec2 A = cot2 A – cot2 B
Solution:


Question 57.
tan2 A sec2 B – sec2 A tan2 B = tan2 A – tan2 B
Solution:


Prove the following identities: (58-75)
Question 58.
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x1 – y2 = a2 – b1. [C.B.S.E. 2001, 20O2C]
Solution:
x – a sec θ + b tan θ
y = a tan θ + b sec θ
Squaring and subtracting, we get
x2-y2 = {a sec θ + b tan θ)2 – (a tan θ + b sec θ)2
= (a2 sec2 θ + b2 tan2  θ + 2ab sec θ x tan θ) – (a2 tan2  θ + b2 sec2  θ + 2ab tan θ sec θ)
= a2 sec2 θ + b tan2  θ + lab tan θ sec θ – a2 tan2  θ – b2 sec2  θ – 2ab sec θ tan θ
= a2 (sec2 θ – tan2  θ) + b2 (tan2  θ – sec2  θ)
= a2 (sec2 θ – tan2  θ) – b2 (sec2  θ – tan2  θ)
=  a2 x 1-b2 x 1 =a2-b2 = R.H.S.
Question 59.
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ±3
Solutioon:

Question 60.
If cosec θ + cot θ = mand cosec θ – cot θ = n,prove that mn= 1
Solution:

Question 61.

Solution:



Question 62.

Solution:



Question 63.

Solution:


Question 64.

Solution:




Question 65.

Solution:





Question 66.
(sec A + tan A – 1) (sec A – tan A + 1) = 2 tan A
Solution:

Question 67.
(1 + cot A – cosec A) (1 + tan A + sec A) = 2
Solution:


Question 68.
(cosec θ – sec θ) (cot θ – tan θ) = (cosec θ + sec θ) (sec θ cosec θ-2)
Solution:


Question 69.
(sec A – cosec A) (1 + tan A + cot A) = tan A sec A – cot A cosec A
Solution:


Question 70.

Solution:

Question 71.

Solution:



Question 72.

Solution:

Question 73.
sec4 A (1 – sin4 A) – 2tan2 A = 1
Solution:


Question 74.

Solution:


Question 75.

Solution:


Question 76.

Solution:


Question 77.
If cosec θ – sin θ = a3, sec θ – cos θ = b3, prove that a2b2 (a2 + b2) = 1
Solution:



Question 78.

Solution:


Question 79.

Solution:

Question 80.
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2 
Solution:


Question 81.
If cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Solution:
cos A + cos2 A = 1
⇒ cos A = 1 – cos2 A
⇒cos A = sin2 A
Now, sin2 A + sin4 A = sin2 A + (sin2 A)2
= cos A + cos2 A = 1 = R.H.S.
Question 82.
If cos θ + cos2  θ = 1, prove that
sin12 θ + 3 sin10  θ + 3 sin8  θ + sin6  θ + 2 sin4  θ + 2 sin2  θ-2 = 1
Solution:

Question 83.
Given that :
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 – cos α) (l – cos β) (1 – cos γ)
Show that one of the values of each member of this equality is sin α sin β sin γ
Solution:


Question 84.

Solution:

Question 85.

Solution:

Question 86.
If sin θ + 2cos θ = 1 prove that 2sin θ – cos θ = 2. [NCERT Exemplar]
Solution:

RD Sharma Class 10th Solutions Chapter 6 Trigonometric Identities Ex 6.1

























































