• NCERT Solutions
  • RD Sharma
    • RD Sharma Class 12 Solutions
    • RD Sharma Class 11 Solutions Free PDF Download
    • RD Sharma Class 10 Solutions
    • RD Sharma Class 9 Solutions
    • RD Sharma Class 8 Solutions
    • RD Sharma Class 7 Solutions
    • RD Sharma Class 6 Solutions
  • Class 12
    • Class 12 Science
      • NCERT Solutions for Class 12 Maths
      • NCERT Solutions for Class 12 Physics
      • NCERT Solutions for Class 12 Chemistry
      • NCERT Solutions for Class 12 Biology
      • NCERT Solutions for Class 12 Economics
      • NCERT Solutions for Class 12 Computer Science (Python)
      • NCERT Solutions for Class 12 Computer Science (C++)
      • NCERT Solutions for Class 12 English
      • NCERT Solutions for Class 12 Hindi
    • Class 12 Commerce
      • NCERT Solutions for Class 12 Maths
      • NCERT Solutions for Class 12 Business Studies
      • NCERT Solutions for Class 12 Accountancy
      • NCERT Solutions for Class 12 Micro Economics
      • NCERT Solutions for Class 12 Macro Economics
      • NCERT Solutions for Class 12 Entrepreneurship
    • Class 12 Humanities
      • NCERT Solutions for Class 12 History
      • NCERT Solutions for Class 12 Political Science
      • NCERT Solutions for Class 12 Economics
      • NCERT Solutions for Class 12 Sociology
      • NCERT Solutions for Class 12 Psychology
  • Class 11
    • Class 11 Science
      • NCERT Solutions for Class 11 Maths
      • NCERT Solutions for Class 11 Physics
      • NCERT Solutions for Class 11 Chemistry
      • NCERT Solutions for Class 11 Biology
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Computer Science (Python)
      • NCERT Solutions for Class 11 English
      • NCERT Solutions for Class 11 Hindi
    • Class 11 Commerce
      • NCERT Solutions for Class 11 Maths
      • NCERT Solutions for Class 11 Business Studies
      • NCERT Solutions for Class 11 Accountancy
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Entrepreneurship
    • Class 11 Humanities
      • NCERT Solutions for Class 11 Psychology
      • NCERT Solutions for Class 11 Political Science
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Indian Economic Development
  • Class 10
    • NCERT Solutions for Class 10 Maths
    • NCERT Solutions for Class 10 Science
    • NCERT Solutions for Class 10 Social Science
    • NCERT Solutions for Class 10 English
    • NCERT Solutions For Class 10 Hindi Sanchayan
    • NCERT Solutions For Class 10 Hindi Sparsh
    • NCERT Solutions For Class 10 Hindi Kshitiz
    • NCERT Solutions For Class 10 Hindi Kritika
    • NCERT Solutions for Class 10 Sanskrit
    • NCERT Solutions for Class 10 Foundation of Information Technology
  • Class 9
    • NCERT Solutions for Class 9 Maths
    • NCERT Solutions for Class 9 Science
    • NCERT Solutions for Class 9 Social Science
    • NCERT Solutions for Class 9 English
    • NCERT Solutions for Class 9 Hindi
    • NCERT Solutions for Class 9 Sanskrit
    • NCERT Solutions for Class 9 Foundation of IT
  • CBSE Sample Papers
    • Previous Year Question Papers
    • CBSE Topper Answer Sheet
    • CBSE Sample Papers for Class 12
    • CBSE Sample Papers for Class 11
    • CBSE Sample Papers for Class 10
    • CBSE Sample Papers for Class 9
    • CBSE Sample Papers Class 8
    • CBSE Sample Papers Class 7
    • CBSE Sample Papers Class 6
  • Textbook Solutions
    • Lakhmir Singh
    • Lakhmir Singh Class 10 Physics
    • Lakhmir Singh Class 10 Chemistry
    • Lakhmir Singh Class 10 Biology
    • Lakhmir Singh Class 9 Physics
    • Lakhmir Singh Class 9 Chemistry
    • PS Verma and VK Agarwal Biology Class 9 Solutions
    • Lakhmir Singh Science Class 8 Solutions

Chaitanya learning

NCERT Solutions for Class 6, 7, 8, 9, 10, 11 and 12

Real Numbers Class 10 Notes Maths Chapter 1

October 23, 2019 by Sastry CBSE

CBSE Class 10 Maths Notes Chapter 1 Real Numbers Pdf free download is part of Class 10 Maths Notes for Quick Revision. Here we have given NCERT Class 10 Maths Notes Chapter 1 Real Numbers. According to new CBSE Exam Pattern, MCQ Questions for Class 10 Maths Carries 20 Marks.

CBSE Class 10 Maths Notes Chapter 1 Real Numbers

R = Real Numbers:
All rational and irrational numbers are called real numbers.

I = Integers:
All numbers from (…-3, -2, -1, 0, 1, 2, 3…) are called integers.

Q = Rational Numbers:
Real numbers of the form \(\frac { p }{ q }\), q ≠ 0, p, q ∈ I are rational numbers.

  • All integers can be expressed as rational, for example, 5 = \(\frac { 5 }{ 1 }\)
  • Decimal expansion of rational numbers terminating or non-terminating recurring.

Q’ = Irrational Numbers:
Real numbers which cannot be expressed in the form \(\frac { p }{ q }\) and whose decimal expansions are non-terminating and non-recurring.

  • Roots of primes like √2, √3, √5 etc. are irrational

N = Natural Numbers:
Counting numbers are called natural numbers. N = {1, 2, 3, …}

W = Whole Numbers:
Zero along with all natural numbers are together called whole numbers. {0, 1, 2, 3,…}

Even Numbers:
Natural numbers of the form 2n are called even numbers. (2, 4, 6, …}

Odd Numbers:
Natural numbers of the form 2n -1 are called odd numbers. {1, 3, 5, …}

  • Why can’t we write the form as 2n+1?

Remember this!

  • All Natural Numbers are whole numbers.
  • All Whole Numbers are Integers.
  • All Integers are Rational Numbers.
  • All Rational Numbers are Real Numbers.

Prime Numbers:
The natural numbers greater than 1 which are divisible by 1 and the number itself are called prime numbers, Prime numbers have two factors i.e., 1 and the number itself For example, 2, 3, 5, 7 & 11 etc.

  • 1 is not a prime number as it has only one factor.

Composite Numbers:
The natural numbers which are divisible by 1, itself and any other number or numbers are called composite numbers. For example, 4, 6, 8, 9, 10 etc.
Note: 1 is neither prime nor a composite number.

I. Euclid’s Division lemma
Given two positive integers a and b, there exist unique integers q and r satisfying a = bq + r, 0 ≤ r ≤ b.
Notice this. Each time ‘r’ is less than b. Each ‘q’ and ‘r’ is unique.
Real Numbers Class 10 Notes Maths Chapter 1 Q1.1

II. Application of lemma
Euclid’s Division lemma is used to find HCF of two positive integers. Example: Find HCF of 56 and 72 ?
Steps:

  • Apply lemma to 56 and 72.
  • Take bigger number and locate ‘b’ and ‘r’. 72 = 56 × 1 + 16
  • Since 16 ≠ 0, consider 56 as the new dividend and 16 as the new divisor. 56 = 16 × 3 + 8
  • Again, 8 ≠ 0, consider 16 as new dividend and 8 as new divisor. 16 = 8 × 2 + 0

Since remainder is zero, divisor (8) is HCF.
Although Euclid’s Division lemma is stated for only positive integers, it can be extended for all integers except zero, i.e., b ≠ 0.

III. Constructing a factor tree
Steps

  • Write the number as a product of prime number and a composite number
    Example:
    Factorize 48
  • Repeat the process till all the primes are obtained
    ∴ Prime factorization of 48 = 24 x 3
    Real Numbers Class 10 Notes Maths Chapter 1 Q2.1

IV. Fundamental theorem of Arithmetic
Every composite number can be expressed as a product of primes, and this expression is unique, apart from the order in which they appear.
Applications:

  1. To locate HCF and LCM of two or more positive integers.
  2. To prove irrationality of numbers.
  3. To determine the nature of the decimal expansion of rational numbers.

1. Algorithm to locate HCF and LCM of two or more positive integers:

Step I:
Factorize each of the given positive integers and express them as a product of powers of primes in ascending order of magnitude of primes.
Step II:
To find HCF, identify common prime factor and find the least powers and multiply them to get HCF.
Step III:
To find LCM, find the greatest exponent and then multiply them to get the LCM.

2. To prove Irrationality of numbers:

  • The sum or difference of a rational and an irrational number is irrational.
  • The product or quotient of a non-zero rational number and an irrational number is irrational.

3. To determine the nature of the decimal expansion of rational numbers:

  • Let x = p/q, p and q are co-primes, be a rational number whose decimal expansion terminates. Then the prime factorization of’q’ is of the form 2m5n, m and n are non-negative integers.
  • Let x = p/q be a rational number such that the prime factorization of ‘q’ is not of the form 2m5n, ‘m’ and ‘n’ being non-negative integers, then x has a non-terminating repeating decimal expansion.

Alert!

  • 23 can be written as: 23 = 2350
  • 52 can be written as: 52 = 2052

Class 10 Maths Notes

  • Chapter 1 Real Numbers Class 10 Notes
  • Chapter 2 Polynomials Class 10 Notes
  • Chapter 3 Pair of Linear equations in Two Variables Class 10 Notes
  • Chapter 4 Quadratic Equations Class 10 Notes
  • Chapter 5 Arithmetic Progressions Class 10 Notes
  • Chapter 6 Triangles Class 10 Notes
  • Chapter 7 Coordinate Geometry Class 10 Notes
  • Chapter 8 Introduction to Trigonometry Class 10 Notes
  • Chapter 9 Some Applications of Trigonometry Class 10 Notes
  • Chapter 10 Circles Class 10 Notes
  • Chapter 11 Constructions Class 10 Notes
  • Chapter 12 Areas related to Circles Class 10 Notes
  • Chapter 13 Surface Areas and Volumes Class 10 Notes
  • Chapter 14 Statistics Class 10 Notes
  • Chapter 15 Probability Class 10 Notes
Class 10 Maths Notes
NCERT Solutions

Filed Under: CBSE

LearnCBSE Sample Papers
  • Factoring Calculator
  • Rational Numbers
  • CGPA Calculator
  • TOP Universities in India
  • TOP Engineering Colleges in India
  • TOP Pharmacy Colleges in India
  • Coding for Kids
  • Math Riddles for Kids with Answers
  • General Knowledge for Kids
  • General Knowledge
  • Scholarships for Students
  • NSP - National Scholarip Portal
  • Class 12 Maths NCERT Solutions
  • Class 11 Maths NCERT Solutions
  • NCERT Solutions for Class 10 Maths
  • NCERT Solutions for Class 9 Maths
  • NCERT Solutions for Class 8 Maths
  • NCERT Solutions for Class 7 Maths
  • NCERT Solutions for Class 6 Maths
  • NCERT Solutions for Class 6 Science
  • NCERT Solutions for Class 7 Science
  • NCERT Solutions for Class 8 Science
  • NCERT Solutions for Class 9 Science
  • NCERT Solutions for Class 10 Science
  • NCERT Solutions for Class 11 Physics
  • NCERT Solutions for Class 11 Chemistry
  • NCERT Solutions for Class 12 Physics
  • NCERT Solutions for Class 12 Chemistry
  • NCERT Solutions for Class 10 Science Chapter 1
  • NCERT Solutions for Class 10 Science Chapter 2
  • Metals and Nonmetals Class 10
  • carbon and its compounds class 10
  • Periodic Classification of Elements Class 10
  • Life Process Class 10
  • NCERT Solutions for Class 10 Science Chapter 7
  • NCERT Solutions for Class 10 Science Chapter 8
  • NCERT Solutions for Class 10 Science Chapter 9
  • NCERT Solutions for Class 10 Science Chapter 10
  • NCERT Solutions for Class 10 Science Chapter 11
  • NCERT Solutions for Class 10 Science Chapter 12
  • NCERT Solutions for Class 10 Science Chapter 13
  • NCERT Solutions for Class 10 Science Chapter 14
  • NCERT Solutions for Class 10 Science Chapter 15
  • NCERT Solutions for Class 10 Science Chapter 16

Free Resources

RD Sharma Class 12 Solutions RD Sharma Class 11
RD Sharma Class 10 RD Sharma Class 9
RD Sharma Class 8 RD Sharma Class 7
CBSE Previous Year Question Papers Class 12 CBSE Previous Year Question Papers Class 10
NCERT Books Maths Formulas
CBSE Sample Papers Vedic Maths

 

NCERT Solutions

NCERT Solutions for Class 10
NCERT Solutions for Class 9
NCERT Solutions for Class 8
NCERT Solutions for Class 7
NCERT Solutions for Class 6
NCERT Solutions for Class 5
NCERT Solutions for Class 4
NCERT Solutions for Class 3
NCERT Solutions for Class 2
NCERT Solutions for Class 1

Quick Resources

English Grammar Hindi Grammar
Textbook Solutions Maths NCERT Solutions
Science NCERT Solutions Social Science NCERT Solutions
English Solutions Hindi NCERT Solutions
NCERT Exemplar Problems Engineering Entrance Exams
Like us on Facebook Follow us on Twitter
Watch Youtube Videos NCERT Solutions App